Fatigue behavior of Ti-6Al-4V ELI including mean stress effects

Patricio E. Carrion, Nima Shamsaei, Steven R. Daniewicz, Robert D. Moser

*Laboratory for Fatigue & Additive Manufacturing Excellence (FAME), Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
+Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA

ARTICLE INFO

Article history:
Received 9 December 2016
Received in revised form 8 February 2017
Accepted 11 February 2017
Available online 17 February 2017

Keywords:
Fatigue
Cyclic deformation
Mean stress models
Life predictions
Titanium

ABSTRACT

This paper investigates cyclic deformation, fatigue behavior, and failure mechanisms for Ti-6Al-4V ELI (extra low interstitial) with and without mean strain/stress. This type of titanium alloy is broadly used in the biomedical and aerospace fields, specifically for implants and structural components, respectively. Fatigue properties were obtained using the strain-life approach with the use of smooth uniform gage section specimens under axial fully-reversed loading. The influence of mean stress on fatigue behavior was studied using four different strain ratios, \(R \). The generated fatigue data was used to assess some strain-based mean stress fatigue life prediction models, including Morrow, Smith-Watson-Topper, Walker, Kwofie, Ince-Glinka and a modified version of the Smith-Watson-Topper. These models offered acceptable results, specifically the Morrow approach which provided more accurate fatigue life predictions. Fractography analysis was conducted to determine the influence of material defects on fatigue life and no major differences were found for the different strain ratios considered. Overall observations indicate that inclusions found near the surface were of great influence on the fatigue behavior.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Titanium alloys are used in a wide range of industrial applications because of their excellent combination of mechanical and chemical properties. Titanium alloys have a relatively high strength to weight ratio, low density, easy formability, corrosion resistance, microstructural stability and acceptable performance at elevated temperatures (300–600 °C) [1–3]. The high strength, low density, bio-compatibility, and good formability characteristics of titanium are desirable for biomedical applications [3–5]. In the biomedical field there have been extensive studies regarding the implementation of titanium (Ti-6Al-4V ELI specifically) in dental implants, heart valves, bone and joint implants, as well as in the manufacturing of several components used in the reattachment of fractured bones [4–7].

Mechanical and fatigue properties of titanium alloys depend substantially on the microstructure, including the phases present (\(\alpha \) or \(\beta \)), and the grain size and shape which are formed during the manufacturing and heat treatment processes. An understanding of the different types of microstructures and their advantages is necessary to carefully choose the type of alloy that offers the best performance for a given application [1]. Ti-6Al-4V is the most widely used among the different types of titanium alloys. Ti-6Al-4V is an \(\alpha + \beta \) type alloy that can be obtained with any of the three types of microstructure attributed to titanium (i.e. equiaxed, lamellar or bimodal), depending on the material processing and heat treatment applied. Ti-6Al-4V has balanced strength and toughness as well as workability and weldability. The latter property has made Ti-6Al-4V a great candidate for the additive manufacturing process [8] which provides the ability of fabricating customized parts with complex geometries such as bio-implants. Ti-6Al-4V, particularly Ti-6Al-4V ELI (extra low interstitial) with low impurity levels of O, Fe, N, and C, is used as a metallic biomaterial because of its excellent corrosion resistance and biocompatibility. This particular titanium alloy was the first to be registered as a biomaterial [6,9,10] and has its own dedicated ASTM standard (F136) [11]. One application of Ti-6Al-4V as a biomaterial is for failed hard tissue, where failure due to fatigue is of great concern as these implants have irregular shapes and are under asymmetric cyclic loading, thus resulting in the presence of mean stress. Damage may be caused by variable and complex loading conditions, resulting in plastic deformation at the microscopic level. As another example, a hip joint implant is exposed to loads caused by physical activities like running, jumping or walking. Such activities cause cyclic loading and in some cases periodic overloading [4,5,12].

* Corresponding author.
E-mail address: shamsaei@auburn.edu (N. Shamsaei).

http://dx.doi.org/10.1016/j.ijfatigue.2017.02.013
0142-1123/© 2017 Elsevier Ltd. All rights reserved.
In this study, Ti-6Al-4V ELI with fully equiaxed grain structure is investigated. The equiaxed structure is chosen because it possesses a high fatigue strength when compared to other microstructures [13,14], while there are other studies indicating the bimodal or lamellar microstructure have better fatigue properties [13,15]. The vast majority of fatigue research regarding Ti-6Al-4V has focused on fatigue crack growth and the stress-life approach, primarily in the high cycle fatigue regime (i.e. elastic deformation only) [4-6,12,15]. Here, we employ the strain-life approach because some of the components made for biomedical applications are not only subjected to cyclic loading but also, in some cases, periodical overloading due to body movements, resulting in local plastic deformation [4,12]. The strain-life approach was selected because it offers a localized measurement of strain and it has been proven to correlate low cycle fatigue data in a better manner than the stress-life approach [16]. Other studies have also implemented the strain-life approach [5,12]; however, the focus has been to investigate the effect of other material and environmental parameters (i.e. grain size, temperature, corrosion).

Mean stress effects on fatigue behavior of Ti-6Al-4V ELI are also studied in this research. While one can prevent mean stress from affecting the fatigue life of the material during testing, for example using fully-reversed fatigue testing in load-controlled condition, mean stresses may be present in many industrial applications specifically under variable amplitude loading [16,17]. Different mean stress effects can occur; among the most common are ratcheting (during load-controlled testing) and mean stress relaxation (during strain-controlled testing). Plastic deformation is attributed to be the cause of mean stress relaxation, meaning that the amount of relaxation depends on the strain amplitude. In strain-controlled cyclic loading with mean strain, although mean stress will be present initially, it may fully or partially relax as cyclic loading progresses. It is known that tensile mean stresses reduce the fatigue life and compressive mean stresses are neutral, if not beneficial; therefore, the effects of mean strain/stress need to be taken into consideration [16]. There are many models used to account for mean stress effects on fatigue behavior. In this study, Morrow’s parameter, the Smith-Watson-Topper equation (SWT), the Walker method, the Kwofie exponential stress function, the Ince-Glinka model and a Modified Smith-Watson-Topper (MSWT) equation are investigated.

2. Experimental methods

2.1. Material and specimen

Ti-6Al-4V ELI, mill annealed wrought hot rolled bar was utilized in this study. Table 1 displays the chemical composition of this alloy based on the manufacturer supplied data. The original diameter of the provided bars was 12.7 mm. The bars were annealed at 1300 °F for 1 h and air cooled. Tension and fatigue specimens were manufactured from the 12.7 mm round bars in the longitudinal direction. Each bar was sectioned into 165 mm long rods and then machined to round specimens with the dimensions and geometry specified in Fig. 1, based on ASTM standard E606/E606M-12 [18]. To conduct strain-controlled cyclic tests, the specimens had a uniform gage section to allow the use of an extensometer. Before testing was performed, each specimen was polished to a 0.5 μm surface finish, thus eliminating machining marks and creating polishing marks in the longitudinal direction of the specimen. The polished surfaces were later examined under an optical microscope to ensure that there were no polishing marks in any other direction than the longitudinal (direction of the applied force). Per suggestion of ASTM standard E606 [18], all specimens were subjected to an acrylic application on the gage section (at two points) in order to protect the polished surface from the blades of the extensometer used to measure the strain.

2.2. Experimental procedures

Analysis of Ti-6Al-4V ELI started first with an investigation of the microstructural characteristics of the wrought mill annealed bar. Segments were dissected, and cross sections in both the longitudinal and radial directions were used to capture images. Both samples were etched using a solution containing 2 mL of hydrofluoric acid diluted in 98 mL of distilled water. The ASTM standard E112-13 [19] was followed to determine the average grain size. Fig. 2(a) illustrates the orientation of the dissected segments. An optical microscope was used to capture the images seen in Fig. 2(b) and (c), which present the etched microstructure indicating the grain boundaries with the equiaxed α phase in the β phase matrix. Fig. 2(b) presents the radial direction view and Fig. 2(c)
presents the longitudinal direction view. A scanning electron microscope (SEM) was also used to observe the microstructure in the radial direction, presented in Fig. 2(d), as a way of comparing the findings to SEM images found in the literature [1–3,9,13,15]. It can be seen from Fig. 2(d) that the etchant corroded the α grains, leaving the β phase. Rather than the clear view of the grain boundaries that Fig. 2(b) and (c) provide, there is no indication of boundaries between α grains in Fig. 2(d), giving a clear view of the distribution of the β phase. After careful measurements, the α grain size number was determined to be GS = 13, which has an average diameter of 4 μm.

Strain-controlled monotonic tension tests were carried out per ASTM E8 [20] standard at a strain rate of 0.001 s⁻¹, to determine mechanical properties including yield strength, σy, ultimate tensile strength, σu, percent elongation, %EL, and percent area reduction, % RA. After testing, the specimen cross section at final fracture was examined, and the reduction in area was measured.

Fatigue properties were generated by conducting strain-controlled fatigue tests with and without mean strains. The strain ratio, \(R_e \), is defined by Eq. (1),

\[
R_e = \frac{\varepsilon_{\text{min}}}{\varepsilon_{\text{max}}}
\]

where \(\varepsilon_{\text{min}} \) is the minimum strain and \(\varepsilon_{\text{max}} \) is the maximum strain. The \(R_e \) values used in study were –1 (fully-reversed), –0.5 (tension-compression), 0 (tension-release) and 0.5 (tension-tension). As previously mentioned, strain-controlled testing may result in some mean stresses; thus, the stress ratio (i.e. \(R_e \)) was also calculated for all tests as \(\sigma_{\text{min}}/\sigma_{\text{max}} \). Table 2 offers a compilation of the various tests and parameters used as well as results from the testing procedure, including strain ratio, \(R_e \), first cycle modulus of elasticity, \(E \), strain amplitude, \(\varepsilon_0 \), and the respective elastic, \(\Delta \varepsilon_e/2 \), and plastic, \(\Delta \varepsilon_p/2 \), strain amplitude components, stress amplitude, \(\sigma_0 \), and mean stress, \(\sigma_m \), at mid-life stable cycle, stress ratio, \(R_e \), and the number of reversals to failure, \(2N_f \). The raw data collected and used in this study can be found in [21]. The frequency during testing was adjusted according to the strain amplitude: the higher the amplitude, the slower the frequency to generate a nearly constant average strain rate for all fatigue tests. For each strain amplitude, a minimum of two specimens were tested to ensure that the test data was consistent and could be replicated.

Strain-controlled fatigue experiments were conducted at room temperature in ambient air using a tapered sinusoidal strain waveform. The strain amplitudes varied from 0.0015 to 0.0120 mm/mm.

Table 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Al</th>
<th>C</th>
<th>Fe</th>
<th>N</th>
<th>O</th>
<th>V</th>
<th>Y</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt%</td>
<td>6.12</td>
<td>0.013</td>
<td>0.190</td>
<td>0.004</td>
<td>0.120</td>
<td>3.99</td>
<td><0.005</td>
<td>BAL</td>
</tr>
</tbody>
</table>

Fig. 1. Round fatigue specimen with uniform gage section per ASTM standard E606/E606M-12 used in this study [18]. All dimensions are in mm.

Fig. 2. (a) Schematic showing the orientation planes of the dissected segments of a Ti-6Al-4V ELI specimen. Optical microscopy images in (b) radial and (c) longitudinal planes revealing equiaxed α grains in the β phase. (d) Radial SEM image showing the β phase in the Ti-6Al-4V ELI specimen.
and the frequency ranged between 0.5 and 5 Hz. In order to increase the frequency in some cases, once the cyclic behavior stabilized, the strain-controlled mode was switched to load-controlled, and the extensometer was removed. The control mode was changed only for tests in which there was only elastic deformation and the stress and strain response was the same in either the load-controlled or strain-controlled condition. Any experiment that reached over 1.0E6 cycles was stopped and determined to be a runout.

Upon fatigue tests completion, selected fracture surfaces were examined using a scanning electron microscope (SEM). Only a limited number of samples were available due to some fracture surfaces being damaged when the specimen reached failure and the fatigue machine did not stop. Fractography analysis was performed on one fracture surface from broken specimens. If needed, the other surface was inspected as well. Each surface was compared and analyzed to find distinct crack initiation sites and regions associated with fatigue crack propagation.

3. Experimental results

3.1. Monotonic and cyclic deformation behavior

The monotonic tensile stress-strain curve for Ti-6Al-4V ELI is presented in Fig. 3(a) by both the engineering and true stress-strain curves. Table 2 lists the monotonic mechanical properties determined by the tensile tests using the engineering stress and strain, including modulus of elasticity, E, yield strength, $σ_y$, ultimate tensile strength, $σ_u$, elongation to failure, %EL, percent reduction of area, %RA, true fracture strength, $σ_{fr}$, and true fracture strain, $ε_{fr}$. As can be seen from the engineering stress-strain curve in Fig. 3(a), the material exhibits very limited strain hardening; once the strain reached a value of 0.0100 mm/mm, permanent plastic deformation is present and the stress changes little as the strain increases until final fracture.

The cyclic deformation behavior of Ti-6Al-4V ELI and the respective cyclic deformation properties were obtained from stress-strain responses under fully-reversed axial loading (i.e. $R = -1$). Seven different strain amplitudes were used to characterize the cyclic deformation behavior of the material. These strains were selected in order to provide a representation of both fully elastic and elastic-plastic cyclic deformation. The cyclic stress-strain curve, with the use of the Ramberg-Osgood relationship based on the stabilized mid-life hysteresis loops, was obtained. The cyclic strength coefficient, K^*, and strain hardening exponent, n^*, were calculated using linear regression analysis of the mid-life steady state stress amplitude, $σ_{am}$, versus the plastic strain amplitude, $Δγ_p/2$, of the fully-reversed cyclic data in the log-log scale, based on Eq. (2). Using the Ramberg-Osgood relationship the cyclic stress-strain behavior can then be expressed based on Eq. (3).
Deformation and fatigue properties of Ti-6Al-4V ELI investigated in this study. The cyclic deformation properties obtained for Eq. (3) are listed in Table 3. The resulting Ramberg-Osgood relationship for Ti-6Al-4V ELI in this study is presented in Fig. 3(b), superimposed with the fully-reversed cyclic stress-strain data and engineering monotonic stress-strain curve. The cyclic stress-strain curve is below the monotonic curve, an indication of cyclic softening behavior for Ti-6Al-4V ELI. Cyclic softening behavior has been also reported in these dual-phase titanium alloys elsewhere [5,14]. However, no cyclic softening or hardening has been observed for pure titanium and some other titanium alloys [17,22].

A nearly stable plateau stress behavior after the initial elastic region can be observed in Fig. 3(b) for Ti-6Al-4V ELI. At strains above 0.0070 mm/mm, there was a stabilization of stress amplitude values, and the stress presented little change as the strain amplitude increased, staying within a range of 695–748 MPa. For example, at 0.0120 mm/mm strain amplitude, the largest alternating stress was 729 MPa, while at a strain amplitude of 0.0080 mm/mm the smallest stress amplitude was 713 MPa. For 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm strain amplitudes, the cyclic data points fell along the elastic region of the monotonic curve. One can also observe from Fig. 3(b) that the Ramberg-Osgood relation cannot account for the fully elastic behavior at strain amplitude of 0.0070 mm/mm as it predicts the presence of plastic strain at this strain level. The cyclic response at 0.0070 mm/mm strain amplitude showed no softening but instead was stable and had a constant stress of 750 MPa; this stress is higher than the stable cycle stresses found at higher strains, meaning that cyclic softening only occurs when plastic strain is present.

Fig. 4 illustrates the mid-life stable hysteresis loops for the fully-reversed fatigue data. As can be seen from this figure, the strain is predominantly elastic, and plastic strain is negligible for strain amplitudes of 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm. A plastic strain value less than 0.0001 mm/mm was considered to be negligible in this study. For the higher strain amplitude values of 0.0080, 0.0100 and 0.0120 mm/mm, the presence of plastic strain was noted, as seen in Fig. 4. In conjunction with this observation, it was also found that the elastic component of these strain amplitudes reached a maximum value ranging from 0.0070 to 0.0075 mm/mm. Fig. 4 also illustrates how there is no further increase in stress with an increase in strain amplitude, but rather a slight decrease. The decrease in stress for strain amplitudes of 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm. For example, at 0.0120 mm/mm strain amplitude, the largest alternating stress was 729 MPa, while at a strain amplitude of 0.0080 mm/mm the smallest stress amplitude was 713 MPa. For 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm strain amplitudes, the cyclic data points fell along the elastic region of the monotonic curve. One can also observe from Fig. 3(b) that the Ramberg-Osgood relation cannot account for the fully elastic behavior at strain amplitude of 0.0070 mm/mm as it predicts the presence of plastic strain at this strain level. The cyclic response at 0.0070 mm/mm strain amplitude showed no softening but instead was stable and had a constant stress of 750 MPa; this stress is higher than the stable cycle stresses found at higher strains, meaning that cyclic softening only occurs when plastic strain is present.

Fig. 4 illustrates the mid-life stable hysteresis loops for the fully-reversed fatigue data. As can be seen from this figure, the strain is predominantly elastic, and plastic strain is negligible for strain amplitudes of 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm. A plastic strain value less than 0.0001 mm/mm was considered to be negligible in this study. For the higher strain amplitude values of 0.0080, 0.0100 and 0.0120 mm/mm, the presence of plastic strain was noted, as seen in Fig. 4. In conjunction with this observation, it was also found that the elastic component of these strain amplitudes reached a maximum value ranging from 0.0070 to 0.0075 mm/mm. Fig. 4 also illustrates how there is no further increase in stress with an increase in strain amplitude, but rather a slight decrease. The decrease in stress for strain amplitudes of 0.0040, 0.0050, 0.0060 and 0.0070 mm/mm, where plastic strain is present, is attributed to cyclic softening. It was also observed that

\[\sigma_a = K \left(\frac{\Delta \varepsilon_a}{2} \right) \]
\[\varepsilon_a = \frac{\Delta \sigma_a}{E} + \frac{\Delta \varepsilon_a}{2} = \frac{\sigma_a}{E} + \frac{\varepsilon_a}{K} \]
for all the previously mentioned strain amplitudes, the stress reduced to approximately 700 MPa. At 0.0070 mm/mm strain amplitude and lower, the stress response was stable and fully elastic; therefore, cyclic softening was not present.

The mean stress responses during mean strain testing with different R_e values are presented in Fig. 5, where the mean stress values versus the number of cycles are plotted. When testing at $R_e = -0.5$, presented in Fig. 5(a), the following strain amplitudes were considered: 0.0045, 0.0060, 0.0075, and 0.0090 mm/mm. The mean stress response at the strain amplitude of 0.0045 mm/mm with $R_e = -0.5$ did not exhibit any relaxation and was constant through the entire test. The mean stress response of 0.0060 mm/mm strain amplitude with $R_e = -0.5$ exhibited relaxation to 172 MPa. Even without full mean stress relaxation, the fatigue life at $R_e = -0.5$ was similar to the one observed for $R_e = -1$ at the same strain amplitude. The mean stress response of 0.0075 mm/mm strain amplitude with $R_e = -0.5$ indicated relaxation to 78 MPa, suggesting that even with a minimal presence of plastic deformation (see Table 2), relaxation may occur. As strain amplitude increased to 0.0090 mm/mm with the same $R_e = -0.5$, almost full mean stress relaxation was observed.

For $R_e = 0$, shown in Fig. 5(b), mean stress relaxation was observed for all tests, although the relaxation at 0.0040 mm/mm strain amplitude was not substantial. For 0.0040 mm/mm strain amplitude, the mean stress was over 400 MPa and while very minor stress relaxation was present, the fatigue life was infinite, and thus, unaffected when compared to the fully-reversed test with the same strain amplitude. When the strain amplitude of 0.0060 mm/mm with $R_e = 0$ was applied, minimal mean stress relaxation was observed, although not to its full extent. The fatigue life of 0.0060 mm/mm strain amplitude with $R_e = 0$ was also reduced as compared to the one of $R_e = -1$ test at the same strain amplitude. The fatigue lives of 0.0060 mm/mm strain amplitude with $R_e = -1$ ranged from 124,952 to 207,610 reversals, while the longest fatigue life was 65,472 reversals for $R_e = 0$. At 0.0080 mm/mm strain amplitude with $R_e = 0$, almost full mean stress relaxation was observed; thus, the cycles to failure and the stress response were not different of the ones obtained from the test at 0.0080 mm/mm strain amplitude with $R_e = -1$. Similar behavior was observed at 0.0100 mm/mm strain amplitude; mean stress showed almost full relaxation, and no effect on the fatigue life was observed when compared to fully-reversed fatigue tests at the same strain level. Therefore, one may conclude that mean strain may not affect fatigue behavior of Ti-6Al-4V ELI when full mean stress relaxation occurs.

For $R_e = 0.5$, the mean stress response was different than the previous R_e values. The strain amplitudes considered for $R_e = 0.5$ were 0.0015, 0.0020, 0.0025, 0.0030, 0.0040, and 0.0045 mm/mm. The stress amplitude responses of tests with $R_e = 0.5$ were observed not to have any type of hardening or softening while the mean stress constantly reduced throughout the test period. As seen in Fig. 5(c) for strain amplitudes of 0.0030, 0.0040, and 0.0045 mm/mm, the mean stress demonstrated continuous reduction, but not fully relaxed. The fatigue lives at strain amplitudes of 0.0045, and 0.0040 mm/mm, which were found to be runouts (i.e. over 1.0E6 cycles) for $R_e = -1$, -0.5 and 0 cases, were reduced to finite lives. For example, the fatigue life at strain amplitude of 0.0040 mm/mm was greater than 1.0E6 cycles for $R_e = -1$, while for $R_e = 0.5$ with the same strain amplitude, the life did not surpass 230,884 reversals. This indicates the severe detrimental effect of a positive R_e value on fatigue behavior as it results in the presence of some considerable tensile mean stress.

In conclusion, the stress amplitude behavior for fully-reversed tests demonstrated that cyclic softening was present exclusively in strain amplitudes higher than 0.0070 mm/mm (as seen in Fig. 4), where some plastic deformation existed. The effect of tensile mean strain was observed to be detrimental on the fatigue behavior of Ti-6Al-4V ELI when full mean stress relaxation did not occur and some tensile mean stress was present.
3.2. Fatigue behavior

Fig. 6(a) presents a semi-log plot of the stress amplitude, σ_a, versus reversals to failure, $2N_f$, for the fully-reversed strain-controlled fatigue tests generated in this study. It can be seen from this figure that at lives less than 20,000 reversals, which correspond to strain amplitudes ranging from 0.0120 to 0.0080 mm/mm, the stress amplitude stays relatively constant. There is little change in this range and the stress amplitude is relatively flat within a range of 695–734 MPa. The stress amplitude for lives longer than 100,000 reversals (i.e. 0.0060–0.0040 mm/mm strain amplitudes) decreases with a reduction in the strain amplitude. The only exception is the data points corresponding to 0.0070 mm/mm strain amplitude. As it was previously shown in Fig. 3(b), there is no difference between the monotonic and cyclic stress response at this strain level, causing the stress response to be higher and stay at a constant stress amplitude. Specimens at higher strains, however, experience cyclic softening, resulting in a decreased stress response. This is the reason why these specimens exhibit a smaller stress response as compared to that of 0.0070 mm/mm strain amplitude, which is the highest fully elastic strain amplitude. The only exception is the data points corresponding to strain amplitudes ranging from 0.0120 to 0.0140 mm/mm (Fig. 6(a)) because some plasticity was predicted. As a result of such shift in the short life regime fatigue data, the short life regime data points are further shifted towards the right as compared to the long life regime data points by considering the plastic strain amplitude, ε_p, which is the highest fully elastic strain-controlled test in this study.

The Coffin-Manson model was implemented using the fully-reversed fatigue data to characterize the strain-life behavior which includes the plastic and elastic fatigue properties. Coffin-Manson is defined as the strain amplitude being equal to the sum of the elastic and plastic strain amplitudes.

Mid-life stable hysteresis loops were used to find the stress amplitude, σ_a, and elastic strain amplitude, Δe_{el}, allowing for the calculation of the plastic strain amplitude, Δe_{pl}, by subtracting the elastic strain amplitude from the total strain amplitude. The elastic component is given by Eq. (4), where the fatigue strength coefficient, σ_f, and fatigue strength exponent, b, were obtained using linear regression on the log-log scale plot of the elastic strain amplitude, Δe_{el}, versus reversals to failure, $2N_f$, data. The plastic component is given by Eq. (5), where the fatigue ductility coefficient, ε_f, and the fatigue ductility exponent, c, were obtained using linear regression on the log-log scale plots of plastic strain amplitude, Δe_{pl}, versus reversals to failure, $2N_f$, data. Finally, Eq. (6) represents the total strain amplitude relation with reversals to failure.

\[
\frac{\Delta e_{\text{el}}}{2} = \frac{\sigma_f}{E}(2N_f)^b
\]
\[
\frac{\Delta e_{\text{pl}}}{2} = \varepsilon_f(2N_f)^c
\]
\[
\varepsilon_a = \frac{\Delta e_{\text{el}}}{2} + \frac{\Delta e_{\text{pl}}}{2} = \frac{\sigma_f}{E}(2N_f)^b + \varepsilon_f(2N_f)^c
\]

Strain-life fatigue properties for fully-reversed data are listed in Table 3. Fig. 6(b) illustrates the total, elastic, and plastic strain amplitudes versus reversals to failure data, as well as fits determined by the Coffin-Manson equation. As seen in Fig. 6(b), the elastic behavior at the strain amplitude of 0.0070 mm/mm is accurately accounted for with the Coffin-Manson elastic fit. The same strain level was poorly matched by the Ramberg-Osgood relationship (see Fig. 3(b)) because some plasticity was predicted.

The plastic strain-life fit in Fig. 6(b) has a very pronounced slope, in part, because of significant cyclic softening at higher strain levels. Due to cyclic softening at higher strain amplitudes, the failure criteria for all of the tests conducted was determined to be final fracture and not crack initiation (or certain load drop). Since in the low cycle fatigue regime (high strain amplitudes), most of the fatigue life is spent in the crack growth stage [16], the short life regime data points are further shifted towards the right as compared to the long life regime data points by considering final fracture rather than crack initiation as the failure criterion. As a result of such shift in the short life regime fatigue data, the resulting ε_f and c are larger than typical.
The strain-life fatigue data for different strain ratios generated in this study are superimposed in Fig. 7. It can be seen from this figure that fatigue life is reduced by increasing the R_e values, specifically in the long life regime. This is expected because negative strain ratios (i.e., $R_e = -1$ and $R_e = -0.5$) contain relatively smaller mean stresses when compared to the other R_e values resulting in some tensile mean stresses. As a comparison, fully-reversed tests yield an endurance limit, the strain amplitude at which the life exceeded 1.0E6 cycles without failure, of 0.0050 mm/mm strain amplitude, while this value reduces to 0.0045 mm/mm strain amplitude for $R_e = -0.5$, 0.0040 mm/mm strain amplitude for $R_e = 0$, and 0.0030 mm/mm strain amplitude for $R_e = 0.5$.

Not a significant difference in fatigue life was observed at higher strain amplitudes (above 0.0070 mm/mm) when comparing all the data with different strain ratios. This is due to the presence of plastic deformation causing mean stress relaxation, and therefore, a less pronounced effect of R_e. When the strain amplitude decreased, the influence of a larger R_e on the fatigue life became greater. The effect of R_e was mainly observed in $R_e = 0.5$ tests, where the fatigue life was greatly reduced as compared to tests with lower strain ratios.

3.3. Fractography analysis

Scanning Electron Microscopy (SEM) was used to characterize the fracture surfaces of selected test specimens to find inclusions, voids or any material defects at crack initiation sites. The majority of fracture surfaces contained inclusions with an average size of 11 µm at the crack initiation site. The chemical composition of the inclusions was found to be rich in carbon and oxygen content, with these elements making up about 70% of the chemical composition. Titanium, aluminum and vanadium content in the inclusions was found to be about 70% of the chemical composition.

For fully-reversed fatigue tests at strains above 0.0080 mm/mm, multiple well defined crack initiation sites were present and each initiation was attributed to a cluster of inclusions. An example of this is shown in Fig. 8(a), for the fully-reversed strain amplitude of 0.0120 mm/mm. The crack propagation area is shown by II in this figure. Four well defined crack initiation sites were observed (denoted by arrows). At the most pronounced site (red arrow), a cluster of inclusions near the surface was observed, as magnified in Fig. 8(b). The second dominating crack initiation site is denoted by the yellow arrow and two relatively smaller initiation sites are denoted by the black arrows. The presence of multiple crack initiations may be explained by the crack growth stage dominating the fatigue failure process in low cycle regime (i.e. high strain amplitude tests), providing time and opportunity for other cracks to initiate [23,24]. Similar characteristics were observed in tests at different strain ratios.

In another example presented in Fig. 9(a), where the strain amplitude was 0.0080 mm/mm with $R_e = -1$, there is a well-defined crack initiation site on the surface (indicated by the red arrow). There was also another crack initiation site approximately 90° (indicated by the black arrow) from the main initiation site. This site did not fully develop and was most likely arrested by the crack propagation area of the main initiation site. The reason why the main initiation site fully developed, and was the driving flaw that caused final fracture, could be attributed to the number of inclusions found at each site. As seen in Fig. 9(b), the main crack initiation site had approximately four inclusions near the surface, while the initiation site that was 90° apart, seen in Fig. 9(c), had only two inclusions.

The number of crack initiation sites reduced to a single, well defined site at lower strain amplitudes for all investigated R_e values. Fig. 10(a), for example, presents the fracture surface with a single crack initiation site for a fatigue test with strain amplitude of 0.0060 mm/mm and $R_e = 0$. The origination site is enclosed by the red rectangle and indicated by the black arrow. The area indicated by II shows the crack propagation region which ends at the arc shaped region that appears at the bottom tip of the yellow arrow of II. The arc indicates the transition from the crack propagation region to final fracture. Fig. 10(b) offers a close view of the inclusions around the initiation site for the pulsating test at the strain amplitude of 0.0060 mm/mm. Upon close inspection, it is observed that approximately five inclusions at the surface, denoted by the red circles, caused the crack initiation for this specimen.

Comparing Fig. 10(a) with Fig. 8(a) shows how the number of crack initiation sites and the maximum stress response may influence the crack propagation and final fracture region. In Fig. 10(a) the crack propagated to a depth of 2.08 mm from the crack initiation site and the fracture morphology resembled that of a typical metal fatigue fracture [16]. In Fig. 8(a), the two dominating crack initiation sites (red and yellow arrow), and the two smaller initiation sites (denoted by the black arrows) propagated independently until they merged leaving a crack propagation region with an overall depth of 2.37 mm from the main initiation site. In Fig. 8(a), the multiple crack initiation sites caused the crack propagation region to be wider with an area of 8.87 mm², while the single crack initiation site in Fig. 10(a) resulted in a crack propagation region with...
an area of 5.49 mm². On the other hand, the difference in crack propagation area is also in agreement with the effect of maximum stress on the size of the final fracture area; a larger maximum stress, σ_{max} (defined as $\sigma_{\text{max}} = \sigma_e + \sigma_m$), typically results in a larger final fracture area, and therefore, a smaller crack growth area. In Fig. 8, $\sigma_{\text{max}} = 723$ MPa and in Fig. 10, $\sigma_{\text{max}} = 831$ MPa; thus, resulting in the size of crack growth area and final fracture area in Fig. 10 to be, respectively, smaller and larger than the ones in Fig. 8.

In single or multiple crack initiation sites associated with low or high strain level tests, the number of inclusions or imperfections seem to have a major role on the crack development and fatigue life of Ti-6Al-4V ELI. As the number of inclusions, and thus, the size of the cluster of inclusions around the initiation site increased, the specimen’s fatigue life was observed to decrease. For example, two fatigue tests conducted at the strain amplitude of 0.0060 mm/mm with $R = -1$ had a fatigue life difference of 82,658 reversals and each test had one well defined initiation site. The first test, seen in Fig. 11(a), lasted for 124,952 reversals and contained approximately nine inclusions at the initiation site. The second test, seen in Fig. 11(b), had a life of 207,610 reversals and approximately four inclusions near the surface where the crack initiated. Further observations also indicate that the number of inclusions has more influence over the fatigue life than the inclusion size. The maximum inclusion size for the specimen in Fig. 11(a) was 54 µm and the total area of the inclusion cluster was 4890 µm². The fracture surface shown in Fig. 11(b) contained a relatively large inclusion of 105 µm in size and an overall cluster surface area of 3719 µm². When comparing these two figures, the presence of a large inclusion did not appear to significantly affect the fatigue behavior. However, the overall size of the cluster in Fig. 11(a) is
larger and appears to have a detrimental effect on the fatigue behavior.

The effect of inclusion cluster size on the fatigue life for fully-reversed and mean strain conditions (i.e. different R_e values) is presented in Fig. 12. The effect of inclusion cluster size shown in Fig. 12 is categorized by the total cluster area: 1–150 μm2, 151–500 μm2, 501–1500 μm2, 1501–3000 μm2, 3001–4500 μm2, and 4501–6000 μm2, where each data point was scaled to represent a given range of cluster area. The total cluster area was measured by summing the area of each inclusion in proximity of the crack initiation site. In cases where multiple crack initiation sites were present, the dominant initiation site was considered in the analysis. As seen in Fig. 12, fatigue lives of Ti-6Al-4V ELI specimens decreased with an increase in the size of inclusion cluster area across different R_e values. It can also be noticed from this figure that the effect of inclusion cluster size is somewhat more significant in the long life regime. Furthermore, specimens tested under the same parameters, and had a similar inclusion cluster size, presented relatively less scatter in fatigue life. Therefore, one may conclude that presence of a relatively large cluster of inclusions near surface may impact the fatigue resistance of Ti-6Al-4V ELI.

Across the different R_e values used, the selected fracture surfaces presented the same characteristics regarding the number of crack initiation sites and the effect of inclusions. The number of inclusions near the surface and their cluster size were found to have the most influence on the fatigue behavior of Ti-6Al-4V ELI. The higher the number of inclusions and the larger their cluster size; the shorter the fatigue life. In cases where multiple crack initiation sites were present, the one with most inclusions was dominant, propagating and causing the final failure. Since Ti-6Al-4V ELI is considered to be a ductile behaving material, the final fracture surface exhibits a cup and cone type shape, and this in turn results in a slanted shear fracture. This trend was observed in every fracture surface, regardless of strain amplitude or ratio applied. The location of the crack initiation site propagated perpendicularly to the applied load, and as the crack approached the end of the propagation region and changed to final fracture mode, the fracture occurred along a 45° plane.

4. Mean stress models

In this section, different strain-based fatigue life prediction models incorporating mean stress effects are compared to assess their applicability for Ti-6Al-4V ELI. The predicted fatigue lives...
using Morrow, Smith-Watson-Topper (SWT), Walker, Kwofie, Ince-Glinka and Modified Smith-Watson-Topper (MSWT) models are compared with experimentally observed fatigue lives.

4.1. Morrow

In the Morrow model, given in Eq. (7), the mean stress, \(\sigma_m \), only affects the elastic portion of the Coffin-Manson equation. This is justified by assuming a negligible effect of mean stress in the presence of plastic strain in the low cycle fatigue regime because of mean stress relaxation. Meanwhile, at lower strain amplitudes, the driving component is the elastic strain and the mean stress may not fully relax; thus, exhibiting a higher influence on the fatigue life [16].

\[
\varepsilon_a = \frac{\sigma_f - \sigma_m}{E} (2N_f)^{b} + \varepsilon_f (2N_f)^{c}
\]

(7)

Fatigue life predictions based on the Morrow approach are compared with experimentally observed fatigue lives in Fig. 13(a). Scatter bands with a factor of three are given to compare the effectiveness of the models. It is important to remark that runouts were included with arrows used to indicate the three possible outcomes. The first outcome; if the arrow is oriented along the solid 45° line, the predicted life was the same as the experimental data, a runout. Second, if the arrow is oriented horizontally, the experimental life was a runout, while the predicted life was finite. In the third case, if the arrow points vertically, the experimental life was finite, while the predicted life was infinite.

As seen from Fig. 13(a), the fatigue life predictions for the different strain ratios are mostly well within the scatter bands of three with \(R^2 = 0.94 \). Although predictions are within scatter bands of three (with exception of one data point), they all fall closer to the lower bound. This indicates that the Morrow approach is slightly overestimating the effects of mean stress, resulting in slightly conservative fatigue life predictions. For example, as seen in Fig. 13(a), four data points that resulted in an experimental runout were predicted to have finite lives by this model. The more accurate fatigue life predictions obtained using the Morrow approach may be explained by the fact that this approach very well represents the Ti-6Al-4V ELI behavior observed; negligible effect of mean stress in the presence of plastic strain in the low cycle fatigue regime (higher strains) because of mean stress relaxation and more effect of mean stress in high cycle fatigue regime (lower strains) due to the lack of plastic deformation and less mean stress relaxation.

4.2. Smith-Watson-Topper (SWT)

The Smith-Watson-Topper (SWT) model is based on strain-life data obtained from fully-reversed tests employing the elastic/plastic coefficients/exponents from the Coffin-Manson relationship (i.e. \(\sigma_j, b, \varepsilon_f, c \), presented in Eq. (6)). The SWT model is expressed by Eq. (8). \(\varepsilon_w \) is the strain amplitude and \(\sigma_{max} \) is the maximum stress, \(\sigma_{max} = \sigma_s + \sigma_m \), where \(\sigma_s \) is the stress amplitude and \(\sigma_m \) is the mean stress [25]. This model takes into account the effects of stress amplitude, as well as mean stress by incorporating \(\sigma_{max} \) into the left hand side of Eq. (6).

\[
\varepsilon_w \sigma_{max} = \frac{\sigma_f^2}{E} (2N_f)^{2b} + \sigma_f \varepsilon_f (2N_f)^{b+c}
\]

(8)

Fatigue life predictions based on the SWT model are compared with experimentally observed fatigue lives in Fig. 13(b). Similar to the Morrow approach, the SWT model predicted fatigue lives fairly well within the scatter bands of three, except for two data points. The \(R^2 \) between predicted and experimental data for the SWT model is 0.86. Nevertheless, unlike Morrow model, the SWT approach presents a better data distribution around the prediction line.

4.3. Walker

In the Walker model, presented by Eq. (9) [26], the \(2N_w \) is the equivalent fully-reversed fatigue life, \(2N_f \) is the expected fatigue life, \(R_e \) is the stress ratio, \(\gamma \) is the Walker fitting constant [26], and \(b \) is the fatigue strength exponent.

\[
2N_w = 2N_f \left(1 - \frac{R_e - 1}{2} \right)^{(1-\gamma)/b}
\]

(9)

This model is appealing due to its parameter \(\gamma \) (a material constant) which can be adjusted to consider the sensitivity of the material to mean stress. For Ti-6Al-4V, the parameter \(\gamma \) has been found to be 0.5431 [26], and was used in this study.

The parameter \(\gamma \), specific to the Walker model, needs to be calibrated with a minimum of two datasets [26]. The first set can be the fully-reversed data and the second set may include any mean stress data. The approach is described in [26], in which the \(\gamma \) parameter was obtained by conducting a multiple linear regression analysis.

The approach employed to incorporate the Walker model into strain-based fatigue analysis is proposed in [26] and has been recently employed in [27]. The basis of the approach is to relate the strain amplitude to an equivalent fully-reversed fatigue life, which is defined by the mean stress model employed (i.e. Walker). The procedure involves combining the Coffin-Manson relationship (Eq. (6)) with the mean stress model employed (in this case Eq. (9)), thus yielding Eq. (10):

\[
\varepsilon_w = \frac{\sigma_f^2}{E} (2N_f)^{2b} + \sigma_f \varepsilon_f (2N_f)^{b+c}
\]

(10)

This model has been demonstrated to provide reasonable results across a variety of ferrous and non-ferrous metals under cyclic loading with mean strain/stress conditions, such as carbon steels, stainless steels, aluminiums, and titanium alloys [26,28].

The fatigue life prediction capabilities of the Walker model for Ti-6Al-4V ELI under various strain ratios are assessed in Fig. 13(c). The Walker model provided fairly good correlations for all the strain ratios considered in this study. However, the Walker model did not offer an improvement over the previously presented models. The \(R^2 \) between predicted and experimental data for the Walker model is 0.86. As seen in Fig. 13(c) for \(R_e = 0, -0.5, \) and 0.5, the Walker model provided similar results as the SWT model. Which can be explained by \(\gamma = 0.5431 \) being very close to 0.5, a case where Walker is similar to SWT [26]. When comparing Fig. 13(b) and (c), it was observed that the Walker model is slightly more conservative than SWT, as the predicted fatigue lives were closer to the lower scatter band. Even though the Walker model uses an additional parameter, obtained by fitting non-zero mean stress fatigue data, there was no improvement when compared to SWT. Furthermore, one disadvantage of the Walker model is the fact that it requires having a minimum of two datasets to calibrate \(\gamma \). While fully-reversed strain-life data may be commonly accessible, mean strain data are not often readily available.

4.4. Kwofie

In the Kwofie model, given in Eq. (11), the \(2N_c \) is the equivalent fully-reversed fatigue life, \(2N_f \) is the expected fatigue life, \(x \) is the material sensitivity to mean stress, \(\sigma_m \) is the mean stress, \(\sigma_s \) is the ultimate tensile strength, and \(b \) is the fatigue strength exponent.

\[
2N_w = 2N_f \left(1 - \frac{R_e - 1}{2} \right)^{(1-\gamma)/b}
\]

(9)
Similar to the Walker model, the strain amplitude is related to an equivalent fully-reversed fatigue life by using Eq. (12), which is based on the Kwofie mean stress model, presented by Eq. (11) [26,29]. The parameter a will vary depending on the materials sensitivity to mean stress. As presented by Kwofie, $a = 0$ implies the material is not sensitive to mean stress, while $a > 0$ indicates the sensitivity of the material to mean stress. In this study a value of $a = 0.7$ was selected for Ti-6Al-4V ELI as it provided the best fatigue life data correlation.

$$2N_k = 2N_f e^{-\frac{\alpha}{E} (2N_k)^{\frac{a}{b}}}$$ \hspace{1cm} (11)

Fig. 13. Fatigue life predictions using mean stress models; (a) Morrow, (b) SWT, (c) Walker, (d) Kwofie, (e) I-G, and (f) MSWT compared with experimentally obtained fatigue lives.
Fatigue life predictions based on the Kwofie model under various strain ratios are compared against experimentally observed fatigue lives in Fig. 13(d). It can be seen from this figure that the Kwofie model, yielding $R^2 = 0.83$, did not offer an improvement over the previous approaches. By comparing the fatigue life predictions of Kwofie (Fig. 13(d)), and Walker (Fig. 13(c)), for $R_0 = 0$, and $R_0 = -0.5$, it is observed that both models, despite Kwofie being an exponential function, offer similar results and the fatigue life predictions are closer to the lower scatter band (i.e. more conservative predictions). The main difference between the Kwofie and Walker models is for $R_0 = 0.5$, where the life predictions for Kwofie deviate further from perfect prediction line toward the upper scatter band (i.e. more non-conservative predictions).

4.5. Ince-Glinka (I-G)

The Ince-Glinka (I-G) model [30] is in fact a combination of Morrow and SWT models. As previously mentioned, the mean stress, σ_m, in Morrow model only affects the elastic portion of the Coffin-Manson equation (Eq. (6)) by assuming negligible effect of mean stress in the presence of plastic strain due to mean stress relaxation. Therefore, the SWT correction is applied only to the elastic strain amplitude, $\Delta e_{\text{eq}}/2$, in the I-G model, given by Eq. (13). In this model, e_{eq} is the equivalent strain amplitude, $\Delta e_{\text{eq}}/2$ is the equivalent elastic strain amplitude, $\Delta e_p/2$ is the plastic strain amplitude, σ_{max} is maximum stress, and σ_p, σ_e, γ are the elastic/plastic coefficients/exponents from the Coffin-Manson relationship.

$$
\frac{\sigma_{eq}}{2} + \frac{\Delta e_{eq}}{2} = \left(\frac{\sigma_{max}}{\sigma_p}\right) \frac{\Delta e_{eq}}{2} + \frac{\Delta e_p}{2} = \frac{\sigma_p}{E}(2N_f)^{2b} + \sigma_e'(2N_f)^{b_1} \gamma
$$

Fatigue life predictions based on the I-G model are compared with experimentally observed fatigue lives in Fig. 13(c). As seen from this figure, the fatigue life predictions for the different strain ratios are mostly within the scatter bands of three with $R^2 = 0.91$. In comparison to the Morrow model (Fig. 13(a)), which were observed to be conservative and with $R^2 = 0.94$, the I-G presents a better distribution around the prediction line. In addition, fatigue life predictions based on I-G model offer an improvement over the SWT (Fig. 13(b)) with $R^2 = 0.86$, while retaining a similar distribution around the prediction line.

4.6. Modified Smith-Watson-Topper (MSWT)

The Modified Smith-Watson-Topper (MSWT) model [31], is a revised version of the SWT (Eq. (8)) model that incorporates the Walker fitting constant, γ ($\gamma = 0.5431$ in this study). The MSWT model is given by Eq. (14), where e_a is the strain amplitude, σ_{max} is the maximum stress, and σ_p, σ_e, γ are the elastic/plastic coefficients/exponents from the Coffin-Manson relationship. The MSWT model is equivalent to the SWT model when $\gamma = 0.5$.

$$
2\gamma e_a \sigma_{\text{max}} = \left(\frac{\sigma_p}{E}\right)^2(2N_f)^{2b} + \sigma_e'(2N_f)^{b_1} \gamma
$$

Fatigue life predictions based on the MSWT model are compared to the experimentally observed ones in Fig. 13(f). The MSWT model provided acceptable predictions, but conservative, for all the strain ratios considered. The R^2 between predicted and experimental data for the MSWT is 0.86, which is the same R^2 that the SWT (Fig. 13(b)) and Walker (Fig. 13(c)) models provided; therefore, the MSWT model did not offer an improvement over the aforementioned models.

Lv et al. [31] also proposed an equation based on monotonic tensile properties to calculate γ, given as Eq. (15),

$$
\gamma = 0.5 \frac{\sigma_u - \sigma_y}{\sigma_u + \sigma_y}
$$

where σ_u is the ultimate tensile strength, and σ_y is the yield strength. This method greatly simplifies the calculation of γ and eliminates the need for having minimum of two sets experimental fatigue data. Employing Eq. (15), with the monotonic tensile properties of Ti-6Al-4V ELI found in this study, results in the same γ parameter value of 0.5431.

In summary, the Morrow model with $R^2 = 0.94$ surpasses the SWT, Walker, Kwofie, I-G, and MSWT models for accounting for the mean strain effect on the fatigue behavior of Ti-6Al-4V ELI as evident by comparing the results in Fig. 13. The I-G model also fairly accurately predicted the fatigue lives, as seen in Fig. 13(e) with $R^2 = 0.91$, and provided a better overall data distribution in comparison to the Morrow, SWT, Walker, Kwofie or MSWT model. Unlike the SWT, Walker, Kwofie, and I-G model, the effects of mean stress are slightly overestimated by the Morrow and MSWT models, and all the data points fell close to, or under the prediction line. While several different models have been proposed to adjust for mean stress effects (i.e. Walker, Kwofie, MSWT) and claimed to offer an improvement [26,29,31] over typical approaches such as Morrow and SWT, they did not provide better results for Ti-6Al-4V ELI fatigue data in this study.

As some final remarks, the Morrow and the I-G models were found to be the most efficient and accurate of the six correction models used. Morrow demonstrated a tendency to overestimate mean stress effects, while the I-G provided a better data distribution. The better fatigue life predictions obtained using these approaches can be explained by the models assuming a negligible effect of mean stress in the presence of plastic strain in the low cycle fatigue regime because of mean stress relaxation. Both models consider a higher influence of mean stress on the fatigue life at lower strain amplitudes (high cycle fatigue regime), where the driving component is elastic strain and mean stress may not fully relax. This very well represents the Ti-6Al-4V ELI behavior observed in this study, with full mean stress relaxation in the low cycle fatigue regime (higher strains) and partial mean stress relaxation and more effect of mean stress in high cycle fatigue regime (lower strains).

5. Conclusions

This study investigated the fatigue behavior of Ti-6Al-4V ELI with and without mean strain. The ability of several strain-based models to account for mean stress effects was also evaluated. The following conclusions can be drawn from the experimental results and analysis:

1. Ti-6Al-4V ELI exhibited a low level of strain hardening under tensile monotonic loading. Once the stress surpassed 960 MPa, as the proportional limit, the stress only slightly increased until it reached the ultimate tensile strength. The amount of cyclic hardening observed for fully-reversed cyclic stress-strain behavior of Ti-6Al-4V ELI was also very small, having a cyclic strength exponent of $n = 0.017$.

2. The presence of cyclic softening in Ti-6Al-4V ELI was observed only when plastic deformation was present (strain amplitudes above 0.0070 mm/mm). It is also important to emphasize that for strain amplitudes above 0.0070 mm/mm, the stress amplitude reduced to a value of 700 MPa as the stress response stabilized. Regardless of strain amplitude, the stress response was relatively constant in the presence of plastic deformation.

3. At strain amplitudes near the yield point, cyclic plastic strain deformation was introduced as a result of accumulation of localized plastic deformation. For example, at a strain
amplitude of 0.0080 mm/mm, the initial hysteresis loop indicated no plastic deformation, while plastic deformation was observed in the stabilized cycle hysteresis loop.

4. Mean strains had more effect on fatigue life in the high cycle regime, where mean stress relaxation was minimal. In the low cycle regime, where the mean stress almost fully relaxed, no effect of mean strain on fatigue life was observed. This indicates mean strain has no effect on fatigue behavior of Ti-6Al-4V ELI in the absence of mean stress.

5. The strain ratio of \(R = 0.5 \) was the most damaging one in this study. Strain amplitudes tested with this strain ratio were below the endurance limit for the fully-reversed condition, yet the fatigue lives decreased significantly as a result of the mean stress being present.

6. Fatigue failure for Ti-6Al-4V ELI was found to initiate at the surface, where several inclusions facilitated the crack initiation. The number of inclusions near the surface and their cluster size were found to have the most influence on the fatigue behavior of this titanium alloy. The overall cluster size presented greater influence than the size of inclusions.

7. Fractography analysis revealed several crack initiation sites at relatively large strain amplitudes, while only a single initiation site was observed at lower strains. In cases where multiple crack initiation sites were present, the one with most inclusions (thus, having the larger cluster size) dominated.

8. While it exhibited a tendency to slightly overestimate the effects of mean stress, the Morrow strain-based model was found to be the most reliable in predicting the fatigue behavior of Ti-6Al-4V ELI in the presence of mean strain/stress. The Ince-Glinka, Smith-Watson-Topper, Walker, Kwoife, and Modified Smith-Watson-Topper models also provided reasonable fatigue life predictions.

Although this study provides some information on the fatigue behavior of Ti-6Al-4V ELI under constant amplitude uniaxial loadings with and without mean strains, the loading in real life applications are far more complex. Therefore, future research on realistic type loading conditions (i.e. multiaxial and variable amplitude loading) is needed in order to better characterize the fatigue performance of Ti-6Al-4V parts.

Acknowledgements

Effort sponsored by the Engineer Research and Development Center under Cooperative Agreement number W912HZ-15-2-0004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Engineer Research and Development Center or the U.S. Government. Most of this manuscript was prepared while Patricio E. Carrion, Nima Shamsaei and Steven R. Daniewicz were at Mississippi State University.

References

[24] Shamsaei N. Multiaxial fatigue and deformation including non-proportional hardening and variable amplitude loading effects. University of Toledo; 2010.